Roll No.

3003

B. Tech. 1st Semester (CSE) Examination – March, 2021 SEMICONDUCTOR PHYSICS

Paper: BSC-PHY-103-G

Time : Three Hours]

[Maximum Marks: 75

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Unit. Question No. 1 is compulsory. All questions carry equal marks.

1. Attempt any six parts:

- $2.5 \times 6 = 15$
- (i) What are main drawbacks of classical free electron theory?
- (ii) When does an intrinsic s/c behave as an insulator? Explain giving examples of intrinsic s/c.
- (iii) What is meant by density of states in metals?
- (iv) Define stimulated and spontaneous emission.

- (v) Why is Schottky junction diode preferred over Pn junction diode for high frequency device application?
- (vi) What is the significance of Fermi energy level? Under what condition Fermi-Dirac distribution function changes to Boltzmann distribution?
- (vii) What is band gap theory?
- (viii) What is meant by latch-up in a CMOS structure?

UNIT - I

- 2. (a) What is density of states function? Derive expression for density of states.
 - (b) Consider a P-type silicon at 300 K doped with boron. Assume that the limit of the Boltzmann approximation occurs when $E_f E_a = 3KT$. Determine the Fermi level position and the maximum doping at which the Boltzmann approximation is still valid.
 - (c) What is expression for probability of function of electrons and holes in the donor and acceptor states? Discuss complete ionization and freeze out condition for suitable band-energy diagrams. 5
- **3.** (a) Discuss the Kronig-Penny model for the motion of an *e* in a periodic potential.
 - (b) What is Fermi level? Derive an expression for the Fermi-energy in terms of the number of electrons per unit volume.

UNIT – II

4.	(a)	Discuss the drift and diffusion phenomenon in
		semiconductor, which is more often present in semiconductor devices?
	(b)	Explain how the resistivity of intrinsic semiconductor varies with temperature.
	(c)	What is Fermi-Dirac distribution function? 3
5.	(a)	Explain Schottky Effect. Show that actual Schottky barrier height proportionately related to position of maximum barrier height due to Schottky effect. 10
	(b)	Design an ohmic contact for n-type Ga As using In As. With an intervening graded in In Ga As region. 5
		UNIT – III
6.	(a)	What is Drude Model?
	(b)	Define and explain optical loss and gain. 6
7.	(a)	How optical transitions takes place in Bulk Semiconductors?
	(b)	Define spontaneous emission and absorption in detail. Why population inversion is necessary for stimulated emission? 9
300	3-	-(P-4)(Q-9)(21) (3) P. T. O.

UNIT - IV

- 8. (a) Write the concept of band gap by UV-VIS spectroscopy.
 - (b) Write parameter extraction from diode IV characteristics.
- 9. Write and explain design fabrication and characterization techniques for quantum wells, wires and dots.15