Roll No.

Total Pages: 03

BT-4/M-24

44156

APPLIED AND COMPUTATIONAL MATHEMATICS BS-207-A

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt *Five* questions in all, selecting at least *one* question from each Section. All questions carry equal marks.

Section A

1. (i) Solve the differential equation:

$$x\frac{dy}{dx} + y\log y = xye^x$$

(ii) Solve:

$$x^2(y-px) = yp^2$$

2. By using Charpit's method, solve the differential equation $(p^2 + q^2)y = qz.$

Section B

3. (i) Evaluate:

$$\int_{0}^{1} \int_{x^{2}}^{x} \left(x^{2} + y^{2}\right)^{\frac{-1}{2}} dy dx$$

by changing the order of integration.

(ii) Evaluate $\iiint_{\mathbb{R}} (x^2 + y^2 + z^2) dx dy dz$, R denotes the region bounded by:

$$x = 0, y = 0, z = 0$$
 and $x + y + z = a(a > 0)$.

4. Show that the vector field $\vec{F} = 2x(y^2 + z^3)\hat{i} + 2x^2y\hat{j} + 3x^2z^2\hat{k}$ is conservative. Find its scalar potential and the work done in moving a particle from (-1, 2, 1) to (2, 3, 4).

Section C

- 5. (i) Find the Laplace transform of $t^2 \cos at$.
 - (ii) Find the inverse of the Laplace transform $\frac{2s-5}{4s^2+25} + \frac{4s-18}{9-s^2}.$
- 6. Using the Laplace transform, solve the initial value problem:

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 2y = 5\sin t$$

where y(0) = y'(0) = 0.

Section D

- 7. (i) Compute real root of $x \log_{10} x 1.2 = 0$.
 - (ii) Find the approximate value, correct to three places of decimals, of the real root which lies between -2 and -3 of the equation $x^3 3x + 4 = 0$, using the method of false position three times in succession.
- 8. Apply Taylor series method of second order to integrate y' = 2t + 3y, y(0) = 1, $t \in [0, 0.1]$ with h = 0.1.

EXAMKIT