Roll No.

Total Pages: 02

BT-4/M-23

44233

BAYESIAN DATA ANALYSIS BS-AIDS-202A

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equalmarks.

Unit I

 (a) Design a Bayesian Data Analysis framework and discuss the working steps of Bayesian Data Analysis.

10

- (b) What is discrete probability? Explain with an example.
- Discuss various infinite models, such as hierarchical models and non-parametric models, in detail.

Unit II

- 3. (a) Discuss the role of posterior predictive checking of models in applied Bayesian statistics.
 - (b) Describe Bayesian decision theory in different contexts.

P.T.O.

4.	(a)	Discuss information criteria and cross-validation
		Model comparison based on predictive performance.
		8
	(b)	Write a short note on hierarchical decision analysis
		for radon measurement. 7
Unit III		
5.	(a)	What is Markov chain simulation? Explain with an
		example. 8
	(b)	What is Gibbs sampling? Give an example in R. 7
6.	Disc	buss the following in detail:
	(i)	Hamiltonian Monte Carlo
	(ii)	Distributional approximations
	(iii)	Approximating conditional and marginal posterior
		densities.
Unit IV		
7.	(a)	Discuss the goals of regression analysis. 7
	(b)	Explain the logistic regression model in detail. 8
8.	Exp	plain nonlinear and nonparametric models such as
		ametric nonlinear models, Gaussian process models,

15

2

and Dirichlet process models.