BT-2/M-24

42041

BASIC ELECTRICAL ENGINEERING ES-101A

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt Five questions in all, selecting at least one question from each Unit.

ipan Judi - 171

Unit I

1. Find Thevenin's equivalent of circuit shown as Figure-1, w.r.t. the 12 Ω resistor.

- 2. (a) Explain Maximum power transfer theorem and correlate it with Theyenin's theorem.
 - (b) A resistor R is connected in series with a parallel circuit containing of two resistors having resistance of 12 and 8 ohm, respectively. The total power dissipated in the circuit is 96 watt and applied voltage is 24 V. Calculate the value of R. 6

Unit II

- 3. (a) Explain in detail the theory of sinusoidal AC response of series RC ckt. with neat sketches and waveforms.
 - (b) Given the voltages $V_1 = 40 \sin(\omega t)V$ and $V_2 = 40 \cos(\omega t)V$, find their sum in periodic sine reference.
- 4. (a) Explain the generation of sinusoidal AC emf with the help of dynamo and neat waveforms. 10
 - (b) Find the average values for full and complete cycles of an ac wave $v = V_m \sin \omega t$.

Unit III

5. (a) Establish relation between line voltage and phase voltage in a star connected balanced 3-phase system.

8

- (b) Taking X-axis intervals of 30 degrees each, draw neatly the complete waves on simultaneous axis: $V_1 = V_m \sin \omega t$, $V_2 = V_m \sin(\omega t 120^\circ)$ and $V_3 = V_m \sin(\omega t 240^\circ)$.
- 6. (a) Explain single phase actual transformer at no load.

10

(b) Deduce condition of maximum efficiency of a single phase transformer. 5

Unit IV

- 7. Explain in detail the construction of a DC generator and working of commutator using neat sketches. 15
- 8. With neat sketches, explain and prove the statement:

 'A 3 phase pulsating magnetic flux produced by 3-phase excited stator winding is equivalent to a single (bipolar) rotating flux'. Hence, explain how the rotor of squirrel cage type 3-phase induction motor starts rotating. Also explain the concept of slip.