Roll No. .....

Total Pages: 3

BT-1/D-23

41046

# CALCULUS & LINEAR ALGEBRA

Paper-BS-133A

Time Allowed: 3 Hours]

[Maximum Marks: 75

Note: Attempt five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

# Here they are the solUNIT-I worker the sales

- 1. (a) Express the integral  $\int_{0}^{1} \frac{dx}{\sqrt{1-x^4}}$  in terms of Gamma function.
  - (b) Verify Rolle's Theorem for the function  $(x-a)^m(x-b)^n$  where m, n are positive integers in [a,b].
- 2. (a) Evaluate :  $\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}} e}{x}$ .
  - (b) Find the Volume formed by the Revolution of loop of the curve  $y^2(a+x) = x^2(3a-x)$  about x-axis.

#### UNIT-II

- 3. (a) If  $A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$  and I is the unit matrix of order 2, evaluate  $A^2 6A + 8I$ .
  - (b) Find the rank of the matrix  $\begin{bmatrix} 3 & 4 & 1 & 2 \\ 3 & 2 & 1 & 4 \\ 7 & 6 & 2 & 5 \end{bmatrix}$ .
- 4. (a) Solve the following equations by Cramer's rule.

$$x+y+z=4$$

$$x-y+z=0$$

$$2x+y+z=5.$$

(b) Find the inverse of the matrix  $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$  and

verify  $A^{-1} A = I$ , where I is the identity matrix of order 3.

### UNIT-III

- 5. (a) Show that the vectors (1,-2,1), (2,1,-1) and (7,-4,1) are linearly dependent in  $\mathbb{R}^3(\mathbb{R})$ .
  - (b) Show that the set  $\{(2,-1,0),(3,5,1),(1,1,2)\}$  forms a basis of  $\mathbb{R}^3$ .

- 6. (a) State and Prove rank and nullity theorem.
  - (b) Let  $T: \mathbb{R}^3 \to \mathbb{R}^3$  be a linear operator defined by T(x, y, z) = (x + z, x z, y), show that T is invertible.

### UNIT-IV

7. (a) Find the eigen values and eigen vectors of the matrix

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}.$$

- (b) If A is square matrix, show that:
  - (i) A + A' symmetric.
  - (ii) A A' is skew-symmetric.
- 8. (a) Find the values a, b, c if  $A = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$  is orthogonal.
  - (b) Let V(F) be an inner product space. If  $u, v \in V$  such that  $|\langle u, v \rangle| = ||u|| \cdot ||v||$ , then show that u and v are linear dependent.