Roll No.

Total Pages: 03

BT-2/M-24

42033

SEMICONDUCTOR PHYSICS BS-115A

Time: Three Hours]

[Maximum Marks: 75]

Note: Attempt Five questions in all, selecting at least one question from each Unit.

Unit I

- 1. (a) Explain the terms: lattice translation vector, symmetry operations, basis, space lattice, unit cell, packing factor and crystal structure.
 - (b) Determine the atomic packing factor for sc, bcc and fcc.
- 2. (a) What are Miller indices? Obtain a relation between the interplanar spacing and cube edge.
 - (b) What do you mean by point defects in solids?

 Derive an expression for the concentration of Frankel defects.

Unit II

3. (a) What are limitations of old quantum theory?

Explain the wave particle dualism by giving examples.

(b)	Prove that the wave group associated with a moving
	particle travels with the same velocity as that of the
	particle.
(a)	What is Heisenberg's uncertainty principle? Prove
	the existence of neutrons, protons and α-particle in
	the nucleus using uncertainty principle.
(b)	Derive the time dependent Schrödinger wave
	equation and discuss the concept of stationary states
	wave packet and the significance of wave function
	Unit III
(a)	Derive an expression for electrical conductivity and
	thermal conductivity on the basis of classical theory
	of free electron.
(b)	What is the density of states in metals? Derive ar
	expression for the density of states and hence obtain
	Fermi energy of a metal.
(a)	Discuss the Kronig-Penney model for the motion of

an electron in a periodic potential.

the applications of Hall effect.

What is Hall effect? Explain how the measurement

of Hall coefficient helps one to determine the

mobility of electrons in the metal. Mention some of

L-42033

5.

6.

(b)

Unit IV

7. (a)	Discuss the el	ectrical co	onductivity	in intrin	sic
	semiconductors	and sho	ow how	it helps	in
	determining the	energy gar	of an intri	insic mater	ial.

7

- (b) Derive an expression for carrier concentration in p-type semiconductors. What would be the position of Fermi level in the same?
- 8. (a) Explain the working of a *p-n* junction. Discuss the forward and reverse biasing along with its V-I characteristics.
 - (b) What are different types of Transistors? Discuss the Field Effect Transistors in detail.