Roll No.

Total Pages: 03

BT-3/D-22

43140

COMPUTER SCIENCE AND ENGINEERING Digital Electronics ES-207-A

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

Unit I

- 1. (a) Convert the following decimal numbers in binary: 2
 - (i) 28.6
 - (ii) 31.567.
 - (b) Perform the following operations using 2's complement:
 - (i) 48 23
 - (ii) 23 (- 67).
 - (c) Explain the conversion of AND operation into OR operation with the help of De-Morgan theorem. 5
 - (d) Simplify (A + B)(A' + C) to minimum number of literals.
- 2. (a) Explain the different properties of logic families. Explain the working of TTL NAND gate. 7

	(b)	Minimize the expression using K-Map: $F = \Pi M(1, 2, 5, 6, 8, 9, 10) \cdot d(3, 7, 15)$. Also realize the obtained expression using AOI
		logic.
		Unit II
3.	(a)	State and explain the working of BCD adder with
	()	its logic diagram.
	(b)	Design a 3-to-8 decoder.
4.	(a)	Design a 3 bit odd parity generator. 5
	(b)	What do you mean by multiplexer? Explain the
		working of $n:1$ mux. Design a multiplexer tree for
		32:1 mux using 8:1 and 2:1 mux. 10
		Unit III
5.	(a)	Explain the working of J-K flip-flop. What is race
		around condition in J-K flip-flop? How can it be
		solved by master slave flip-flop?
	(b)	Convert S-R flip-flop in D flip-flop. 7
6.	(a)	Design a synchronous mod-6 counter. Use J-K flip-
		flop for designing the counter.
	(b)	What do you mean by register? Draw and explain
	()	the logic diagram of serial in serial out shift right
		register. 7

Unit IV

- (a) Explain the working of R-2R ladder Digital to
 Analog Converter.
 - (b) Describe the working of successive approximation type ADC.
- 8. (a) Draw the diagram of basic RAM cell. Explain SRAM and DRAM memories. Also describe, how read and write operations occur in RAM.
 - (b) Draw the block diagram of memory device. Mention the working of ROM. Also draw diagram showing ROM array.

EXAMKIT