Roll No.

Total Pages: 03

BT-3/D-23

43140

DIGITAL ELECTRONICS ES-207A

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

Unit I

1. (a) Differentiate between the following:

5

- (i) Positive and negative logic
- (ii) Positive and negative logic.
- (b) List various logic operations. Mention gates corresponding to them. Explain, how NAND gate can be used to perform OR operation.
- (c) Convert decimal numbers into BCD (i) 46, (ii) 327.89, (iii) 20.30.
- 2. (a) State and prove (i) Duality Theorem (ii) De-Morgan's theorem.

	(b)	Write the rules of minimization using I Minimize the given expression using K-Mar $F(A, B, C, D) = \Sigma(1, 2, 4, 5, 7, 8, 9, 11, 1)$ Realise the obtained expression using logic	p: 3, 14).	
			w 11	
		Unit II		
3.	(a)	Draw logic diagram of full adder. Expla	ain its	
		working.	8	
	(b)	Design an octal to binary encoder.	7	
4.	(a)	What is a multiplexer? Explain working	of an	
		n: 1 multiplexer.	8	
	(b)	Design a 4 bit comparator.	7	
		Unit III		
5.	(a)	Differentiate between the following:	5	
		(i) Latch and flip-flop		
		(ii) Level triggering and edge triggering.		
	(b)	Explain working of JK flip-flop. Discuss race at	round	
		problem of JK flip-flop. Also describe how M	aster-	
		Slave flip-flop overcomes this problem.	10	
6.	(a)	Explain application of shift register as ring counter.		
			5	
	(b)	Design a synchronous mode 5 counter. Use JK	flip-	
		flops for designing the counter.	10	

Unit IV

7.	Explain working of the following:		
	(i)	R-2R ladder type DAC	
	(ii)	Successive Approximation type ADC.	

8. (a) Draw diagram of a memory cell. Explain either read OR write operation with timing waveforms in memory cell.

(b) Write a note on ROM. 5

