Roll No.

Total Pages: 03

BT-5/D-23

45245

INFORMATION THOERY AND CODING EC-307A

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit.

Unit I /

- 1. (a) Two dice are thrown. The sum of the points appearing on the two dice is a random variable X. Find the values taken by X and the corresponding probabilities.
 - (b) Explain Shannon's noiseless coding theorem. 7
- 2. (a) Find the mean square and the variance of the Gaussian RV with the PDF as:

$$p_x(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-m)^2/2\sigma^2}$$

(b) Define Entropy. List and explain its various types.

7

Unit II

3. (a) List and explain various types of codes.

8

(2-18/1) L-45245

	(b)	Explain Shannon's noisy coding theorem. 7
4.	(a)	State and discuss Kraft inequality. 8
	(b)	A typical communication channel has a bandwidth
		of 3.1 kHz (300 Hz $-$ 3400 Hz) and S/N as 30dB.
		Calculate the maximum channel capacity. 7
		Unit III
5.	(a)	Consider a discrete memoryless source (DMS) with
		source probabilities {0.35, 0.25, 0.20, 0.15, 0.05}.
		Determine the Huffman code for this source. 8
	(b)	Define and explain Mutual Information and its
		various properties. 7
6.	(a)	Discuss Shannon's first theorem.
	(b)	Differentiate between A priori and A posteriori
		entropies. 7
		EXAMKIT
		Unit IV
7.	(a)	Discuss Shannon's second theorem for noisy
		channels.
	(b)	For a generator polynomial $g(x)$ for a (7,4) cyclic
		code, find code vectors for the following data
		vectors: 1010, 1111, 0001 and 1000.

8. A linear (6,3) code is generated according to the generating matrix G:

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

The receiver receives r = 100011. Determine the corresponding data word if the channel is a BSC and the maximum likelihood decision is used.

