Roll	No.	
KOII	MO.	***************************************

Total Pages: 04

BT-5/D-24

45168

MICROPROCESSOR AND INTERFACING ES-301A

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt Five questions in all, selecting at least one question from each Section. All questions carry equal marks.

Section I

- 1. (a) Create a schematic representation of the 8086 microprocessor's functional components and elaborate on the concept of Pipelining.
 - (b) Explain the concept of Memory Segmentation in detail.
- (a) Illustrate the pin layout of the 8086 microprocessor and provide a detailed explanation of each pin's purpose.
 - (b) Describe the role of the 8284 chip in generating timing and reset signals for the 8086 microprocessor.

Section II

3.	(a)	Provide and analyze the timing diagram for a			
		memory read operation in the 8086 microprocessor's			
(b)		Minimum Mode. 10			
	(b)	Classify semiconductor memories. Describe the			
		procedure of interfacing static memories with a CPU.			
		5			
4.	(a)	Sketch and explain the interface of 8 K × 8 RAMs			
(b)		and 8 K \times 8 E ² PROM using a decoder in minimum			
		mode.			
	(b)	Give the cell structures of PROM and E2PROM			
		memories. 5			
		Section III			
	(a)	Generate the HEX codes for the following			
		instructions : 10			
		(i) Mov AX, [SP+DI][2000]			
		(ii) Mov AX, BX			
	(b)	Explain the following instructions with an example			
		for each:			
		(i) LDS			
		(ii) XLAT			
		(iii) AAA			
		(iv) DAA			
		(v) ROL.			
		(1)			

- (a) Define Addressing Modes and explain all the valid

 addressing modes for 8086 microprocessor. Explain
 the different assembler directives for 8086
 microprocessor.
 - (b) Write a 8086 ALP to convert a given hexadecimal number into its equivalent ASCII code. 5

Section IV

- 7. (a) Interface 8-bit ADC with 8086 using 8255 ports.

 Configure port A of 8255 for transferring output of ADC to the CPU and port C for control signals.

 Assume that an analog input is present at I/P2 of the ADC and a clock input of suitable frequency is available for ADC. Draw the schematic and write the required assembly language program.
 - (b) Draw and explain the pin configuration and the internal architecture of 8255. Write a BSR mode control word subroutine to set bits PC7 and PC3 and reset them after 10 milli seconds. The port address selected is 83h.

- 8. (a) With the help of a block diagram, explain the functioning of Intel 8259 chip.8
 - (b) Explain in detail the functioning of 8237 DMA controller.

