Total Pages: 3

BT-3/D-21

43195

MATHEMATICS FOR BIG DATA AND OPTIMIZATION Paper: BS-CS-AIDS-201A

Time: Three Hours] [Maximum Marks: 75

Note: Attempt any *five* questions in all selecting at least *one* auestion from each unit. All questions carry equal marks.

UNIT-I

1. (a) Find the fourier series expansion of

$$f(x) = 2x - x^3 \text{ in } (0, 2\pi).$$
 (7.5)

- (b) Express the function in Q1(a) as half range Sine series in the interval (0,3). (7.5)
- 2. (a) Using Parseval's identity for Fourier Transform, evaluate

$$\int_{0}^{\infty} \frac{dt}{(9+t^2)(25+t^2)} \ . \tag{7.5}$$

(b) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$. (7.5)

UNIT-II

3. (a) Solve the differential equation :

$$(3x^2 + 6xy^2) dx + (6x^2y + 4y^3) dy = 0. (7.5)$$

43195/00/KD/608

[P.T.O.

(b) By variation of parameter, find the solution of

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \sin x \,. \tag{7.5}$$

4. Solve the equation :

$$(D^2 + a^2)y = \cos ax + e^{-2x}. (15)$$

UNIT-III

- 5. (a) Find the root of the equation $x \log_{10} x 1$, correct to four decimal places, by Regula Falsi method. (7.5)
 - (b) Estimate the missing term from the following table :

X	0	1	2	3	4
F(x)	1	3	9	1	81

(7.5)

6. (a) Find the maximum and minimum value of y(x) from the function tabulated below:

X	-2	-1	0	1	2	3	4
y(x)	2	-0.25	0	-0.25	2	15.75	56

(7.5)

(b) Given that
$$\frac{dy}{dx} = x^2 + y$$
, and $y = 1$, $x = 0$.

Find an approximate value of y at x = 0.5 by modified Euler's method. (7.5)

UNIT-IV

7. Using Kuhn Tucker method,

Minimize
$$f = x_1^2 + x_2^2 + 60x_1$$
,
subject to $x_1 - 80 \ge 0$, $x_1 + x_2 - 120 \ge 0$. (15)

8. Determine the extreme points as well as evaluate the following function f(x):

where
$$f(x) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6.$$
 (15)