Roll No.

1

Total Pages: 03

BT-3/D-22

43171

MATHEMATICS-III BS-205A

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt *Five* questions in all, selecting at least *one* question from each Seciton. All questions carry equal marks.

Section A

- 1. (a) Discuss the convergence of the series $\sum \frac{\sqrt{n}}{\sqrt{n^2+1}} x^n$.
 - (b) Prove that the series $\sum \frac{x^n}{2n!}$ is convergent.
- 2. (a) Obtain a Fourier series expansion of the following periodic function of period:

$$f(x) = \begin{cases} \frac{1}{2} + x, & -\frac{1}{2} \le x \le 0 \\ \frac{1}{2} - x, & 0 < x < \frac{1}{2} \end{cases}.$$

(b) Find Fourier cosine series expansion of a periodic function f(x) = x, $0 < x < \pi$.

Section B

- 3. (a) Solve the differential equation: $(y^4 + 2y)dx + (xy^3 + 2y^4 4x)dy = 0.$
 - (b) Apply the method of variation of parameters to solve the differential equation $\frac{d^2y}{dx^2} + y = \csc x$.
- 4. (a) Find the solution to the Bernoulli equation $\frac{dy}{dx} + \frac{y}{x} = x^2 y^2.$
 - (b) Solve the equation:

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = \cos 2x.$$

Section C

- 5. (a) Find the area lying inside the cardioid $r = 2(1 + \cos \theta)$ and outside the circle r = 2.
 - (b) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \frac{xdydx}{\sqrt{x^2+y^2}}$ by changing to polar form.
- 6. (a) Evaluate the double integral $\int_{0}^{\infty} \int_{0}^{x} xe^{-\frac{x^{2}}{y}} dy dx$.
 - (b) Evaluate the integral $\iiint (x^2 + y^2 + z^2) dx dy dz$ throughout the volume of the sphere $x^2 + y^2 + z^2 = 4$.

Section D

- 7. (a) Find the magnetic flux generated by the magnetic field $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ over the surface of the sphere $x^2 + y^2 + z^2 = 4$ in the first octant.
 - (b) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (1, 2, 3).
- 8. (a) Find the directional derivative of the function xy + yz + zx at the point (1, 2, 1) in the direction of the vector $\hat{i} + \hat{j} + \hat{k}$.
 - (b) A fluid motion is given by $\overline{V} = r^2 r$. Show that the motion is irrotational.

EXAMKIT

(