Roll No.

Total Pages: 4

BT-4/J-22

44182

DISCRETE MATHEMATICS Paper-PC-IT-204A

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt five questions in all, selecting at least one question from each unit. All questions carry equal marks.

UNIT-I

1. (a) Show that

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}, n \ge 1$$

by mathematical induction.

- (b) Construct the truth tables for the following statements (any two out of three):
 - (i) $(p \to p) \to (p \to \overline{p})$.
 - (ii) $(p \vee \overline{q}) \rightarrow \overline{p}$.
 - (iii) $p \leftrightarrow (\overline{p} \vee \overline{q})$.
- 2. (a) If A, B, C be arbitrary sets, prove that
 - (i) (A B) C = (A C) B.
 - (ii) (A B) C = (A C) (B C).

- (b) John made the following statements:
 - (i) I love Lucky.
 - (ii) If I love Lucky, then I also love Vivian.

Given that John told the truth or lied in both cases; determine whether John really loves Lucky.

UNIT-II

- 3. (a) Let A = {Fine, Yang} and B = {president, vicepresident, secretary, treasurer}. Give each of the following:
 - (i) $A \times B$.
 - (ii) $B \times A$.
 - (iii) $A \times A$.
 - (b) Let R be the relation from A to B, and let A₁ and A₂ be subsets of A. Prove that
 - (i) If $A_1 \subseteq A_2$ then $R(A_1) \subseteq R(A_2)$.
 - (ii) $R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$.
- 4. (a) Let the relation (x, y) ∈ R, if x ≥ y defined on set of positive integers. Is R a partial order relation? Prove or disprove it.
 - (b) Suppose that R and S are relation from A to B. Prove that
 - (i) If $R \subseteq S$, then $R^{-1} \subseteq S^{-1}$.
 - (ii) $(R \cap S)^{-1} R^{-1} \cap S^{-1}$.

UNIT-III

- 5. (a) Prove that if $f: A \to B$ and $g: B \to C$ are one-to-one functions, then $g \circ f$ (composition function of g and f) is one-to-one.
 - (b) Find the total distinct numbers of six digits that can be formed with 0, 1, 3, 5, 7 and 9 and how many of them are divisible by 10?
- 6. (a) Solve the recurrence relation

$$a_n - 7a_{n-1} + 10$$
 $a_{n-2} = 0$, $a_0 = 0$ and $a_1 = 3$ by using generating function, where $n \ge 2$.

(b) Let $f: A \to B$ and $g: B \to C$ be functions. Show that $g \circ f$ (composition function of g and f) is onto, then g is onto.

UNIT-IV

- 7. (a) Define the following:
 - (i) Abelian group.
 - (ii) Normal subgroup.
 - (iii) Cyclic group.
 - (b) If G is a set of real numbers (non-zero) and let

$$a * b = \frac{a.b}{2}$$
, show that (G, *) is an Abelian group.

- 8. (a) Let H is a subgroup of a group G, prove that the left cosets aH, bH of H in G, are either disjoint or are identical.
 - (b) Let (A, +, .) be a ring such that $a \cdot a = a$ for all a in A
 - (i) Show that a + a = 0 for all a, where 0 is the additive identity.
 - (ii) Show that operation · is commutative

EXAMKIT