Roll No.

Total Pages: 03

BT-4/M-23

44182

DISCRETE MATHEMATICS PC-IT-204A

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt Five questions in all, selecting at least one question from each Unit.

Unit I

- 1. (a) Give a counterexample to disprove the following propositions:
 - (i) $A \cup (B-C) = (A \cup B) (A \cup C)$
 - (ii) $A \oplus (B \cap C) = (A \oplus B) \cap (A \oplus C)$.
 - (b) State and prove Inclusion-Exclusion Principle. 7
- 2. (a) Determine whether or not each of the following isa tautology or contradiction:
 - (i) $\sim p \leftrightarrow (p \lor \sim p)$
 - (ii) $[(p \lor q) \land (\sim q)] \rightarrow p$.
 - (b) What are normal forms? Discuss its various types using suitable examples.

 9

(3-57/5) L-44182

P.T.O.

Unit II

- 3. (a) Prove that (D_{30}, \leq) is a lattice. Also draw a Hasse diagram of D_{30} . 7.5
 - (b) If R is an equivalence relation on a set A, show that R⁻¹ is also an equivalence relation on A. 7.5
- 4. (a) Let $\Sigma = \{a, b\}$. Define a relation R on Σ^* as : xRy if x is a prefix of y. Is R a partial order? 7.5
 - (b) How can you represent a relation in computer memory? Explain using suitable examples. 7.5

Unit III

- 5. Solve the following recurrence relation using generating functions: 15 S(n) 2S(n-1) 3S(n-2) = 0, $n \ge 2$ with S(0) = 3 and S(1) = 1.
- 6. (a) Prove that a function $f: X \to Y$ is invertible if and only if it is bijective. 7.5
 - (b) Let f(x) = ax + b and g(x) = (x b)/a on \mathbb{R} , where $a \neq 0$. Find $(g \circ f)(x)$ and $(f \circ g)(x)$. 7.5

Unit IV

7. (a) Prove that H, a subset of group [G; *], is a subgroup.

- (b) What do you understand by monoid, submonoid and monoid isomorphism? Explain. For each subset, describe the submonoid that it generates: 10
 - (i) {3} and {0} in $[Z_{12}; \times_{12}]$
 - (ii) $\{5\}$ in $[Z_{25}; \times_{25}]$.
- 8. (a) Prove that group of automorphisms is a group with respect to composite of functions as the composition.

7.5

(b) Determine all zeros of $x^4 + 3x^3 + 2x + 4$ in $Z_5[x]$.

7.5

EXAMKIT